Using Random Forest Tree Classification for Evaluating Vertical Cross-Sections in Epoxy Blocks to Get Unbiased Estimates for 3D Mineral Map
نویسندگان
چکیده
Areal mineral maps are constructed from the polished sections of particles that settle to bottom epoxy resin. However, heavy minerals can preferentially bottom, making surface rich in minerals. Therefore, will become biased estimates volumetric (3D) map. The study aims test whether any vertical cross-section (any section along settling direction particles) be an unbiased estimate 3D map a chromite ore sample. For purpose this study, 2D cross-sections were acquired by using Random Forest classification coupled with image pre- and post-processing tools. Then, converted without assuming stereological errors. modal mineralogy particle size distributions predicted compared same features estimated particulate sample XRD dry sieving analyses, respectively. Any which yields distribution similar true analyses was selected as results suggest is estimate, unlike at heavier preferentially.
منابع مشابه
Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملdeterminate aster satellite data capability and classification and regression tree and random forest algorithm for forest type mapping
recognition equal units and segregation them and upshot planning per units most basic method for management forest units. aim this study presentation and comparison classification and regression tree (cart) and random forest (rf) algorithm for forest type mapping using aster satellite data in district one didactic and research forest's darabkola. in start using inventory network 500* 350 m...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Politeknik dergisi
سال: 2021
ISSN: ['1302-0900', '2147-9429']
DOI: https://doi.org/10.2339/politeknik.602688